Das
Prinzip der
Energieerhaltung beschreibt der
Energieerhaltungssatz >
Energie kann nicht verschwinden oder aus dem Nichts entstehen<. Die
Energie1 kann lediglich von einer
Form in eine andere
umgewandelt werden. In einem geschlossenen System bleibt die
Gesamtmenge von
Energie erhalten. Die
Gesamtenergie ist eine
Erhaltungsgröße. Bei einem offenen System entspricht die Zunahme der Gesamtenergie der Differenz der von außen zuströmenden und der nach außen abfließenden
Energie.
1Wichtige
Energieformen sind z. B. die chemische
Energie, thermische
Energie, potenzielle
Energie und kinetische
Energie und die
Energie, die in elektrischen und magnetischen Feldern gespeichert ist (Lichtenergie, elektrische
Energie, magnetische
Energie)
Energieverluste kann es nur in dem Sinne geben, dass Energie entweder einem offenen System entweicht, oder dass sie zum Teil unerwünscht in eine andere, nicht nutzbare Energieform umgewandelt wird.
Der Energieerhaltungssatz gilt in der Thermodynamik als der erste Hauptsatz. Der zweite Hauptsatz der Thermodynamik bringt die zusätzlichen Einschränkungen, dass Prozesse, die zwar die Gesamtmenge an Energie erhalten, aber zu einer insgesamt sinkenden Entropie führen würden, sind physikalisch nicht möglich.
Die Energieerhaltung wird oft über das Prinzip eines Kugelstoßpendels erklärt. Da es aber bei allen auftretenden Stößen stets nur zu zentralen elastischen Stößen zwischen genau zwei Kugeln kommt, wird schon bei dem ersten Stoß Teile der Gesamtenergie durch Reibungsarbeit in thermische Energie umgewandelt. Es wird sich also im Laufe der Zeit die Energie abbauen und das Pendel wird zum Ruhestand zurückkehren. Wenn es nicht so wäre, dann hätte man ein Perpetuum Mobile.
Bei einem Kugelstoßpendel (Newton-Pendel, Newton-Wiege, Kugelpendel) sind die Kugeln gleicher Masse und Pendellänge hintereinander aufgehängt. Wenn man die am weitesten rechts hängende Kugel anhebt und gegen die andern prallen lässt, wird die am weitesten links hängende Kugel abgestossen. Hebt man zwei Kugeln an, fliegen auf der andern Seite zwei weg und so weiter. Hebt man mehr als die Hälfte der Kugel an, ist die Zahl der weggehenden Kugeln immer noch gleich der Zahl der aufprallenden. Die mittleren Kugeln gehören dann sowohl zu den aufprallenden als auch zu den abgestossenen. Im Extremfall ist anfänglich nur die Kugel ganz rechts in Ruhe und nach dem Stoss die ganz links positionierte.
Bei der Abfolge von elastische Stössen bleibt die kinetische Energie und der Impuls erhalten (Impulserhaltung).
Beispiele aus der Praxis:
Eine Wärmepumpe (Kältemaschine) entzieht einem Medium Wärme. Diese kann aber nicht einfach verschwinden; sie wird anderswo als Abwärme abgegeben. Auch die Antriebsenergie der Wärmepumpe muss vollständig als Wärme enden, da es keine andere Möglichkeit gäbe, die Gesamtenergie zu erhalten. Allenfalls könnte ein kleiner Teil der Energie in Form von Schall entweichen; dies macht jedoch in der Praxis sehr wenig aus.
Wenn ein Pumpspeicherkraftwerk eine bestimmte Wassermenge in das obere Reservoir pumpt und später dieselbe Wassermenge “turbiniert” (d. h. zur Stromerzeugung in einer Turbine nutzt), ist die Lageenergie des Wassers am Ende gleich wie vorher (unter Annahme, dass das Wasser am gleichen Ort landet, wo es entnommen wurde). Die Energieerhaltung besagt dann, dass die beim Turbinieren gewonnene Energiemenge gleich der zum Pumpen aufgewandten abzüglich aller Energieverluste z. B. in Pumpe, Turbine und Motor/Generator ist. Quelle: Dr. Rüdiger Paschotta - RP Photonics Consulting GmbH